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1. Abstract

A new class of asymptotically stable adaptive control laws is introduced for application to
the robotic manipulator. Unlike most applications of adaptive control theory to robotic
manipulators, this analysis addresses the nonlinear dynamics directly without approximation,
linearization, or ad-hoc assumptions, and utilizes a parameterization based on physical (time-
invariant) quantities. This approach is made possible by using energy-like Lyapunov functions
which retain the nonlf{near character and structure of the dynamics, rather than stmple
quadratic forms which are ubiquitous to the adaptive control literature, and which have bound
the theory tightly to linear systems with unknown parameters. It is a unique feature of
these results that the adaptive forms arise by straightforward certainty equivalence adaptation
of their nonadaptive counterparts found in the companion to this paper (i.e., by replacing
unknown quantities by their estimates) and that this simple approach leads to asymptotically
stable closed-loop adaptive systems. Furthermore, {t {s emphasized that this approach does not
require convergence of the parameter estimates ({.e., via persistent excitation), invertibility

of the mass matrix estlmate, or meajurement of the Joint accelerations. -

1. Introduction -

In past years, many papers have appeared on the apglication of adaptive control theory to robotic
manipulators (cf., [2]-(7], and Hsia [8] for overview). It is a genaral property of adaptive designs
based on Lyapunov's Direct Method, that the Lyapunov/function %s chosen as a simple quadratic type, well-
known and well studied in the standard adaptive confrol literature [12][{13]). However, this particular
Lyapunov function was originally motivated for appl{ications to the standard adaptive control problems
(t.e., linear systems with unknown parameters), d not for nonlinear dynamical aystems. Hence, applications
of standard adaptive control techniques to robotdc manipulators invariably require rhe dynamics to be considered
as linear. This in turn, requires the use of -hoc assumptions and/or analysis techniques including
1) treatment of position dependent quancitles As unknown constaats, for which they aust be assumed to vary
slowly with time; 2) linearization of the system about some local operating point-valid only for small
excursions from nominal; 3) the use of lineaf decoupled madels for the links, which neglects nonlinearities
and crosscoupling effects; and 4) neglecting the nonli{near and time~-varying dynamics completely by assuming
the plant is linear. Hence, stability results based on these assumptions are questionable, and a rigorous
proof of stability for adaptive control of robotic manipulators remains unresolved.

A recent exception to the above criticism 1s due to the work of Craig, Hsu and Sastry [9}. Here, a
useful "linear in the parameters" formulation is exploited to simplify the analysis, and to demonstrate global
convergence of an adaptive version of the computed-torque control law - without approximation to the nonlinear
dynamics. However, the resulting adaptive controller requires the invertibility of the mass matrix estimate
(which is not guaranteed a-priori), and measurement of the joint accelerations (which is generally unavailable).
It {s suggested in [9], that the former can be handled by projecting parameter estimates into known regions of
parameter space for which the mass matrix inverse exists, and I{n which the true parameters are required to llie.
However, knowledge and calculation of such reglons is not straightforward and appears to be a weakness of the
method.

In this paper, the "linear in parameters” formulation of [9] is used in conjunction with a different
Lvapunov function. Here, the choice of Lyapunov function is more closely related to the energy of the system,
and better retains the nonlinear structure and character of the dynamics. In addition, many problems associated
with adapting the computed-torque control law directly are avoided by making use of the new class of exponentially
stabilizing controllers introduced in [1]. Although these controllers are very similar in form to the computed
torque method, they have many advantages in the nonadaptive case (cf., [1]), and have the unique property that
they can be made adaptive by using a straightforward certainty equivalence approach (i.e., by replacing unknown
quantities by their on-line estimates). Furthermore, the class of adaptive systems defined in this manner
can be shown to be asymptotically stable without approximation to the nonlinear manipulator dynaaics. This
approach does not require convergence of parameter estimates (i.e., via persistent excitation), invertibility
of the mass matrix estimate, or measurement of joint accelerations.

In the most recent lizerature ({.e., preprints, conference papers, etc.) there appears to be other work
currently taking place which combines the linear in parameters formulation with a new Lyapunov function {10},
{11]. Although this work {s very new and is evolving very rapidly, we will try to contrast our results where
possible, and provide an overall perspective.
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The format of the paper is as follows. In Sec. 2 the results of [1] are reviewved and susmarized as
required for treatment of the adaptive control case. 1In Sec. 3, asymptotic stability is proved for the class
of systems arising from certainty squivalence sdaptation of the control laws in [1). Slightly tsngential to
the main thrust of the paper is ths analysis in Sec. & of the sdaptive computed torque mathod. Since
the computed-torque control law is widely established in the literature, and widely applied in practics,
it is useful to apply the techniques developed herein to see to what extent it can be wade adaptive and to vhat
extent stability can be gusranteed. In Sec. 5, several remarks sre made pertinent to the nev adsptive designs,
and conclusions are given in Ssc. 6.

2. Background and Notation

2.1 Manipulator Dynamics

The well-known Lagrange-Euler equations of motion for the n-joint manipulator is given as follows,

q "9, (2.1)
where
n
capap) = L [te,a," M ()" - } (a,q," M, (a, )] (2.3)
iw

e1 g ith unit vector

M(q,)

th
Tu H qn 1~ component of 9

"1‘“1) -

k(ql) ] gravity load

Here, ucR™ is a generalized torque vector, Q1 97 izcl“ are generslized joint position, velocity and
aczeleration vector, (e.g., q1 is an angle or a distance for a revolute or prismatic joint, respectively,
M(q)eR?*D {3 the symmetric positive definite mass inertia matrix; C(qy,q2)€R™ 1s the Coriolis and centri-
fugal force vector; and k(qi)eR® is the gravitational load vector.
2.2 Some Useful Identities
Let the following notations be derined,
n
T
Mya;,2) = ) M (a)z e
i=1 n
. d - T
M(q,.9,) = g5 M(q)) i_ZlHi(ql) e q,

n
Hag.z) = L [(e2™M () = (e (a))7)
i=1

a a
by =ay =9y 0 M), 7979y

94° 924 9 desired joint position and velocities respectively (qu - ild)

T 1
1(q1140954) = 89y [5 M(q;,9,)4q, - C(q;.9,)q,]

Using the above notation, the following identities are quoted from (1] without proof. 1In these
identities, x, y and z are used to denote arbitrary vectors of appropriate dimension,

Identity 1
&(qluqz)z = My(q;,2)q,  where vector z is arbitrary

Identity 2
Clay.2)z = 3 (M (a),2) - I(a;.2))2

Identity 3
J(qy,2) = HDT(ql.z) - MD(ql.z)
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2.3 Impurtant Lemma '

In this section, a useful lema is reviewed, quuted directly without proof from [1). Yor convenience,
this result vill be alternatively referred to as the g-Ball Lemma due to the method used to prove it.

Lesmna 2-1 (8-Ball Lemma)
Given a dynamical system
i‘ - fi(xl....xu,:) R xiclni v t> [}

Let £;'s be locally Lipschitz with respect to Xypeee,Xy uniforuly in t on bounded intervals and coantinuous
in t for t > 0. Suppose a function V:RP1X:--¥AN x g <+ R, is given such that

N
T
V(Xype0eyXyyt) @ X, Po(X,pe00,X,,8)%x, ,
1 *x 1,§-1 1 1'% 2 Rl
V is positive definite in XyveoosXy

k 2
Posueeimg®) <= T G- T ovyyllno| M= 0] @4
el sy,
wvhere ay Y“. li >0, 1216 116 {(1,...,N}
Let 51 > 0 be such that,
g 1% 012 £ Vexpeen g © (2.5)
4
Let VO - v(‘.(o)p""ﬁ'“))po)
If v4cl,, k
i Ay
qi > JEE Ylj ('-c;) . (2.6)
: s
then Vv A.¢(0, a, - | Y. 4y,
i i jtlz 1) EJ
i
. 2
V(Xpoeeeakyet) € = igllxi ||xil[ Ve>0 e

2.4 Exponentially Stabilizing Coatrol Laws

In {1], various new exponentially stabilizing compensators were introduced for both the set-point and
tracking control problems. For the purposes of adaptive control, it is of interest to consider the subset of
this class summarized ‘n Table I. In addition, the well-known computed torque control has also been included
in Table I for comparison purposes. It is noted that the desired potential field U"(Aql) used in {1] has been
chosen here simply as,

ur(aqy) = 3 aq,7 Ky2ay s .n

so as not to obscure the presentation with additional obstacle avoidance objectives. Nevertheless, many of
the adaptive control results presented herein are 2asily extended to the more general case.

It is useful to observe that all Control Laws 1-7 differ from the computed torque method in that the mass
matrix M(q)) does not premultiply the position and velocity feedback gains and K, respectively. This
property is critical since it renders this entire class of control laws amenable to simple adaptation schemes
(i.e., certainty equivalence adaptation) which can be shown to lead to desired asymptotic stability properties.
The presence of the mass matrix premultiplier otherwise prevents simple cancellations in the Lyapunov function
devivative, hindering most attempts to apply adaptive control directly to the nonlinear dynamic manipulator
equations. A recent exception to this can be found in the work of Craig, Hsu and Sastry {91.

However, the resulting adaptation law requires that the estimated mass matrix be invertible for all values of
estimated parameters. This in turn requires on-line projections of parameter estimates into prespecified
bounded regions of parameter space where M(q)) is not only invertible, but where the true parameters are
certain to lie. This approach not only requires tight bounds on parameter uncertaiaty, but iuvolves a very
difficult (al beit off-line) determination of the proper parameter projection domains. This problem is
further exacerbated by the fact that the adaptation law is not parameterized by physical parameters and is
of the form where the transformation back to physical parameters is neither straightforward or unique. These
problems are overcome in this paper by using the exponentially stabilizing controi laws of Table I, which do
not involve a premultiplying mass matrix on the feedback gains.
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TABLE 1

t
ABILITY CROSS-REFERENCE
COMPUTED TORQUE CONTROL LAW CONDITIONS FOR STABI To (L)% AND (20]
q ired (2.38)
uo® - M) (K sa) ¢ K 8q) + Kk(a)) + H(g))a,y + C(a;.95)q, None require
NEW EXPONENTIALLY STABLE CONTROL LAWS
. 1 1 d (4.28)
Loue - KRba - Kaq +kiq) ¢ Hadey, - F 3a 4950954 * T Mp(ay.94)9, None require
: 1 1 None Required (4.20)
2. ue - KBa - K Bquekla)) ¢ Mg))ay, - 3 30qy.9,09; + 3 Hy(9;,49,)9,, a
a 1 1 None Required (4.2¢)
3oy~ "p"“x - K2a, + k(q)) + M(qy)ay, - 3 3(a; 08,909, * 3 1,0q,.9,)9,,
. 1 1 None Required (6.2d)
4. y = - ‘p"“x - Kquz + k(q)) + Mla e,y - 7 J(ql.qz)q2 +3 "n(“x"*zd)“z q
. n
2
5. uwe - Kpéql R P k(q) + Mlq))a,, + C(ql.qu)q“ a.m(xv) > 7= (4.6)
6. us - K3q - K dqy b k(a)) + "(“1"“24 + Cla;,9))9, a_, (K ) sufficiently large .7
w.r.t. Initial condition
7o e - Kdq) - K Bqy + kiq)y) ¢ M3y )8y, ¥ Clagguayy)9yg 0, (n(K,) sufficiently large (4.8)

* T
Y Ceneral Awsumptions Ilqldll. l|q2dl|. lqudl| bounded; kK © >0, K = X

w.r.t., Inftial condition

T, 0
. P

-

T

L A
Let U'(Aql) - Aql KpAql in (1)

2

In the nonadaptive case, comparisons between the new control laws of Table I and the computed torque
method can be found in [1], Nevertheless, a brief account is in order here. In particular, Control Laws 1,
2,3,4 are toughly "on par" with the computed torque method in the nonadaptive case, guaranteeing exponential
stability with no conditions on Kp or Ky. Unlike the computed torque method, however, they are not in & form
suicable for application of the recursive Newton-Euler computation technique. This presently sppears to be
their major disadvantage. In order to overcome this difficulty, Control Laws 5, 6 and 7 were developed
in a form suitable for recursive Newton-Euler computation. Relative to the computed torque method, Control
Law 5 utilizes the desired velocity signal 934 in place of the measured velocity q; i{n the nonlinear terms of
the controller. This "cleans up" the !eedbaci signal in the sense that nonidealities due to sensor dynamics
and measurement noise in q; are avoided in the nonlinear feedback terms. Control Law 7 further replaces 9
in K, M and C by qjq. This decouples the nonlinear terms from real-time measurements, which completely .
removes the requirement for on-~line computation of nonlinear terms in the controller implementstion. Control
Law 6 1s exactly the computed torque method without the premultiplying mass matrix term described earlier.

The advantages of these controllers are off-set slightly by the conditions imposed on K, and Xy for guaranteeing
asymptotic stability i.e., that Ky be chosen sufficiently large for Control Laws 1, 2, 3, 4, 5, 6 and that both
Ky and Kp be chosen sufficiently large for Control Law 7. It will be seen in the adaptive case that these
requirements can be removed by adapting these feedback gains approoriately.

The use of q4 rather than q, in many of the new control laws offers additional advantages. In particular,
in the set-point control application qzd-é d=0. Hence, there is considerable simplification i{n the coatrol
laws relative to the computed torque nethoﬁ, i.e., the nonlinear terms vanish from the control law. This
simplification carries over directly tc the adaptive case and provides substantial simplification in set-point
control relative to the recent adaptive control laws of Slotine and Lt {11} and Paden (10]).

3. A New Class of Asymptoticeclly Stable Adaptive Control Laws

All of the new exponentially stabilizing control laws summarized in Table I have the unique
property that can be adapted in real-time so as to yield asymptotically stable adaptive control systems.
Furthermore, the adaptation is done in a certainty equivalence fashion, i.e., by simply replacing ’
unknown quantities in the control laws by their estimates - as generated by an appropriate parameter
adaptation algoritha. In this section, asymptotic stability for the various control laws will be
Proved, and the proper mechanisms for parameter adaptation will be derived.
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The simplicity in #tructure of the adaptive control schemee presented hare is largely due to a
“linear in the parameters” formulation of the problem. This particular paramsterization is becoming
increasingly popular im recent litersture (cf., [9]{10]{18)(19]D and will be discussed in more detail
below.

3.1 Linear in the Parameters Formulation

A useful parameterization of the nonlinear dynamicsl equations arises by noting the following
relations (x, y and s arbitrary vectors),

A Dy = R (x,y)0

(x,y.)y c( ) c

H(x)s = B (x,3)0,

k(x) = 'k('”k

M (x,7)y = Hy(x.y)e,

vhere Hg, Hy, Hx and Hp are known matrix valued functions of x, y and 5, and vhere 8., Oy, ok, and 6p are
vectors of constant parameters related directly to true physical parameters (mass~3, inertias, link
lengths, center of gravities, etc.). It is emphasized that this parsmeterization does not contain

any hidden "slowly varying" states in the parameter vector definition and does not require any

linearization of the dynsmical equations of motion.
3.2 Global Asymptotic Stability for Adaptation of Control Laws 1, 2,3, 4

In this section, global asymptotic stability is proved for adaptation of Control Laws 1, 2, 3 and 4.
In order to avoid redundant analysis, the details of the proof will be considered only for Control Law 1,

and the extension to the other control laws vill follow immedistely by taking advantage of the unified
treatment of these control laws givea in {1].

3J.2.1 Asymptotic Stability

Consider Control Law 1,

Ou - - A 1

u lpﬂql K dq, + k(q,)4M(q,)a,, = 7 J(a;.3,08,, + 7 My(a,.9,4)4, (3.1)
Here, superscript "o" is used to denote the ideal nonadaptive control law, f.e., the completely “tuned”
control law which would be used if the parameters were known exactly. Using the linear in the parameters

formulation discussed in Sec. 3.1 there exists e matrix Hl(ql. 42, 92ds q24) and a veccor of paramsters
8 such that,

% - K Aq. - K Aq. +HDB
u K eD K 1, H1 (3.2)
vhere

3 . 1 1
B3 = M(a,)a,, - 5 Ja1.95)a,, + 3 My(q).9,,)a, (3.3)

Here, the parameters in 8 are constant with time and are related directly to physical link and payload
parameters. When these parsmeters are unknown, the parameter vector 8 {s replaced by its estimate
8(t) {n real-time to give the following adaptive control law,

u = - KpAql - K‘qu + HIO (3.4)

Subtracting (3.2) from (3.4) and rearranging gives

u=u+ HI(B-O) 4 u’ o+ Hlo {3.9)
This ts an {mportant relation since it shows that the adnpttxe_control is equal to the nonadaptive control
plus an expression which is linear in the parameter error ¢ = 8-6.

The proof of stability then follows by choosing the following Lyapunov function,

v-v°+%orro rerl>o (3.6a)

where V° i3 the Lyapunov function for the nonadaptive control law used in [1], and where OTN is a positive
definite function in the parameter error 4. For completeness, V? {3 rewritten here &f., [1],(4.4) where

U*(4q,) 2 1 Aqlr K da,),
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v = 3 80,7 Mia )0a, 4 3 8a)T (R 4K dBq, + cda,T niq))eq, . (3.60)

Taking the derivative of V along system trajectories and substituting control law (3.3) gives upon
rearranging,

VeV e (8qy + ciqT m 0 + 47T (3.7

vhere (V° is the Lyapunov function derivative for the nonadsptive case, and- vherse the additional terms
involving 4 on the right hand side of (3.7) arise directly from the additional terms involving 4 in the
control law (3.5) and the Lyapunov function (3.6) respectively.

The second and third terms of (3.7) are cancelled exactly by the choice of adaptation law,

P r™1n, F(aq, + caq)) (3.8)

The expression for the remaining term v° s simply taken from (1) as, (see (1}, (4.5) where v ] c-m(l"),
also note that Control Law 1 corresponds to case (4.2h) for which a = 3J)
2

vev®
2 2 2
- - o llag 117 - a,ll8q, 12 & vy, 118q 11 l1sq,ll 3.9)
where
3 2
o - c(o.m(gp) -3 ) (3..0e)
o, -0 (k) -cme+d2 (3.100)
2 min''v 4 °2
[
n2MN (3.10¢)
n, = :;: Ilqmlln1 (3.11a)
- .11b
ny = ()1: llni(ql)ll) (3.11b)
ue :ax Ilﬂ(ql)ll (3.11c)
1
0 <¢<c <« 12 arbitrary
oz arbitrary
2

t arbitrary

Applying the 8-ball argument of Lemma 2.1 to (3.9) using the values of aj, a3, and yvz; given in

(3.10), 1t follows that {f,

3 2

a-tn(‘p) >3 N ® 1

3 M V.3

a-m(lv) > c(u +z;—2- + 5 )
Then,

: 2 2
[ EEENITTRILESWITPR]
for any xl and xz such that,

3 2
A, (0, C(a_m(lp) e M D))

N 372, Y32

\2 ={9, 3-1n(Kv) - clu + % :i t 3 (E;) )
vhere
Vot Y|
t=0
£, Lok +ck) -1 com]
1 2 "win Tp v -
1 c

EZ ‘2'(1-‘;2')2(")

A
g (M) = ::n Ontn M)
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Since oz is arbitrary, it can be chosen sufficiently small g0 that (3.12a) is sstisfied. With this
choice of oz. the value of ¢ in (3.12b) can oe chosen sufficiently smsll so that inequality (3.12b) is
satisfied. BHence (3.13) follows. This is essentially the same proof of stability as in the nocsdaptive
case (c.f., [1] Theorem 4-1) with the following exceptions,

1) The value of Vo 1n (3.12b) and (3.14b) now includes the inftial parsmeter error % OT(O)N(O)-
2) The value of ¢ is nov required for implementation of the parsmeter adaptation law (3.8).

3) ¥ 1n (3.13) 1s nov only negative semidefinite in the state since the full state vector in the
adsptive csse 1is augmented by ¢.

It ie noted that proporty 3 destroys the simple exponential etability ar t used earlisr in the
nonadsptive case (cf., {1), Theorem 4-1) to insure ssymptotic convergence °f||M | and ||8q,}|. In addition
since the error system in (4q;, 4q2,4) is nonautonomous (and in general, mport&u:). uudird invariance
principles sre not applicable. Alternstively, we make use of & lemma due originally to

Barbalat, quoted without proof from Popov [14] (pg. 211‘.

Lemma 3-1 (Barbalat)
1f W 1s a real function of the real variable t, defined and uniformly continuous for t , 0 and if the
limit of the integral -

t
11-[ W(e')de' ,
tee /o
exists and is a finite number, then
1im W(t) = 0 . »
t-..

Yor our purposes let,

wee) 43, 118a,(0)]12 + 3l lagy(0)] 12

80 that
Ve-w (3.17)
Integrating both sides of (3.17) from 0 to t, yields upon rearranging,
(3.18)

t
’ -
L wde' <v v(t)

Since V, is bounded, and V(t) is nonincreasing and bounded below, it follows that

t
llnI Wde' <=

t*=
Also, since W is bounded, W(t) is uniformly continuous. Hence, application of Barbalat's Lemma gives,

linW=20 3.19)
t“

or equivalently ||aq,|]+0 and | {aq,]1+0.

This completes the proof of ssymptotic stability. The proof, however, is not a global one due to
property 2, i.e., the value of ¢ vhich vas not required in the nonadaptive case now appears in the
parameter adaptation law (3.8). Hence, one is committed to choosing a particular value of ¢ in the
adaptive implementation. Of course, c can always be chosen sufficiently small to satisfy the requiresent,
however, the position tracking performance determined by the magnitude ol Ay {n (3.14a) must be compromised
as a result. BRence in practice, the initial choice of c can be made using vhatever bounds on n3, n2, u,
g(M) and V, are available a-priori, and the value of c can be improved (incresased) on-line as more information
becomes available. It is noted that (3.16s) and (3.16d) impose additional constraints on how large c can
become, since it is required that £; > 0 and £, > 0 for a positive definite V (these conditions can be shown

sufficfent).

The «symptotic stability proof presented above for adaptation of Control Law 1, is easily extended to
sdaptation of Cootrol Laws 2, 3 and 4, since the corresponding nonadaptive Lyapunov function derivatives
for these control lavs are of exactly the same form as VO in (3.25) (see [1], Theorem 4-1 for details).
For convenience, all asymptotically stable adaptive control.laws discussed thus far, and their appropriate
parameter adaptation laws are summarized in Table II, corresponding to cases l.a, 2.a, l.a, and 4.a,
respectively. ’

An alternative to choosing ¢ sufficiently small in the above asymptotic stability argument is to
choose Ky, sufficiently large. In this case, the condition on c above can be removed completely by adapting
Ky on-line. This modification insures global asysptotic stability of the adaptive control system (i.e., choice
of ¢ independent of the initial condition V,) and is discussed in more decail below.
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3.2.2 Clobal Asymptotic Stability-Adapting Ky

knowa
Since the velocity gain Ky enters linesrly in the control law, it can be adapted as 1f it vere an un
pnnncn: using the ..:.':muf.uon of See. 3.2.1. It will be shown that this approach removes the dependence
of the choice of ¢ on the inicial condition V, and this completes the proof of global asymptotic stability

for the sdaptive case.
Consider Control Law 1 written in adaptive form, vhere both 8 and g are adapted in real time 1i.e.,

X 8 (3.20)
ue -~ lpAql - '\qu + 310

3.3).
bt time-varying quantity which remains to be specified, and H; is as defined earlier in (
n‘n.::.:.w::du;t:vo concrz I:Hqu" in (3.1) 1s subtracted from (3.20) to give the following expression,

uwu® - 8Ky Aq, + U ¢ (3.21)
2 1
vh.uﬂ,el,-!,mdo-e-o.
The Lyapunov function for the stability analysis is given as
vevetomelamarTx), 650, rorfso (.22)
vhere a nev term has been added relative to (3.6a), quadratic in the error 4K,. Taking the derivative
of V along system trajectories and substituting control law (3.21) gives upon rearranging
* _ 30 T T
Vev + (qu + chl) Hlo +¢1
+ TRUSAE,T - 2q,(aq, + c8q,)T1aK, ) (3.23)
v 2489 IR .
The latter tarms are cancelled exactly by the choice of parameter adaptation lawse,
5-;--r‘1nr(Aq + c4q,) (3.24a)
1 2 1 :
s 3 1 T
8Ky = K, = + 7 (Aq, + chl)qu (3.24p)
The choice leaves V exactly of the form (3.9) i.e., applying the 8-Ball Lemma 2.1,
. *0 2 2
VeV <o ]lag 7 - a e, (3.25)
1f,
3 2
%ainl®) >3 "y 0 . (3.26)
3" . "1 Y67
d.‘n(lv) > eu + -6-9—2 + 5 (q) ) (3.27)

In (3.26) and (3.27), all quantities are defined exactly as in (3.12a) and (3.12b) respectively, except
for Vo which is presently the initial value of V in (3.22). Furthermore, the values of g1 and g7 are
once again given as

-l - 2
4 3 [UM“(Kp + cK)) - 2%cg(M)] (3.28)
1 c
& "3 - L—z Ja (M) (3.29)

An important observation is that,

2 e (3.300)
v, - olle 1, lik|

> e (3.30%)
g - ol ID, lix

=K. T>0, there exist values of 02 12, and -KVT>0 (vith o (¥,)
Hence, for any choice of 8>0, ¢>0 and , t , L4, oKy
suf!iéiently large) such chu': inequalities (3.26) .and (3.27) are satisfied, and 5156. £,>0 in (3.23§ and
(3.29), respectively. Global asymptotic stability of this adaptive control scheme then“"follows immediately
by application of Barbalat's Lemma to the Lyapunov function derivative (3.25), as was done earlier in

equations (3.17) through (3.19).
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The global asymptotic stability of adaptive controllers based on Control Laws 2, 3 and 4 (where K, is
adspted on-line) follow from an identical argument, since o corresponding to the nonadaptive Lyapunov
function derivatives for these control laws are of exactly the same form as {° in this analysis (see [1],
Theorem A-~1 for details). Por convenience, these adaptive control laws involving adaptation of Ky are
summarized in Table II, corresponding to csses 1l.b, 2.b, 3.b, and 4.b, respectively.

3.3 Global Asymptotic Stability for Adaptation of Control Laws 5, 6 and 7

Global asymptotic stability for adaptation of Control Laws S, 6 and 7 can be proved using exactly the
same techniques as applied in Sec. 3.2. The only difference lies in slight variactions i{in the nonadaptive
Lyapunov function derivative VO which arises in each sdaptive control anslysis

Due to space limitations, these proofs have bean omitted, but the results are summarized in Table II

correspouding to cases S.a, 5.b, 6.a, 6.b, and 7.a, 7.b, respectively. Datails can be found in {21}, to
which the equation numbers in Table II are referenced.

4. Adsptive Computed Torque Method

It was mentioned earlier that in the computed torque method (i.e., control law @) the presence of the M(q;)
ters premultiplying the and K, gaine complicates the Lyapunov analysis and hinders most simple attempts to
make it adaptive. Nevertheless, the computed torque controller is a well-known control law in the literature
and is widely applied in practice. Hence, it is useful to investigate under what conditions it can be made
adaptive, and to vhat extent adaptive stability can be guaranteed. For this purposs, we consider s special
case of the computed torque control law which has scalar gains ky and k,, i.e.,

° .

- A 4

u = - Mgy (k By + Kk Aq)) + k(q)) + M(q))ay, + C(q),9,)9, (4.1)
This 1s written in adaptive form as,

ueu’+Hg (4.2)

vhere $ =« © - 8, and the linear in the parameters part has been chosen as,

Hg® = = M(a) (K Ao +k 8,) + k(a;) + M(a)azy + CCay0a)a, %.3)
Let a Lyapunov function be defined as,
vevt+loTry , ratlso | (4.4a)
where
Ve 70" Mlaaq, + 3 (k +ek )8q," M(a dbq; + caq,T u(q))0q, (4.4b)
p v

Then, the derivative of (4.4) along system trajectories induced by control (4.2) is given by

. T
Vo= 8q," [~k M(q))4q, + -;- Mp(a;,845)q,]

T
+ -
cbq) - [~k M(q))aq) + My(q),8ay)a, + ¥;(q),08q,)q,] (4.5)
+ (8q, + caq))T Hge + 37Ty (4.5)
Let,
. : -1 T
$ =8 = - " Hy (8q,+cq)) (4.6)
Then,

° 2 2 2
v:'“IHAql” -°2”Aq2” +712”Aq2” ”Aqlll

+ (g2 1evy, Hagyl 1| agy11 .7

where
ap = elk, 2 - n,(1 + %) _ (4.8)
ay = ka®) -3 - Colg (4.9)
Y " cn1 (4.10)
YT M ot Y2tTM (.10



Applying the 8-Ball Lemma, it follows that,

. 2 2
Ve Haa 17 - 2yl laa, (6.12)
1f
' 2 v %
ek g(M) > n, (1 + %)) +¢ n, (=2 (4.13)
en v 1 1
1 2.1 _0,2 042 4.14
k, g > 50 + 554+ 30 (Ez) +cn () ( )
° 1
1
g = 7 [k, + ck, - ct’lgon, (4.15)
-l (4.16)

=3z Q- si)g(u) ; 12 > 0 arbitrary
L

It 1is noted that for any c >20, both kp and kv can alwvays be chosen sufficiently large so that £,>0 and
£2>0 (for appropriste choice of £<>0 fn (4.15), (4.16)), and inequalicies (4.13) and (4.14) are satisfied.
Hence, the adaptive computed torque control law given by (4.2), (4.3) with parameter adaptation (4.6) i
asymptotically stable when kp and ky are chosen sufficiently large.

Since kp and ky must be chosen sufficiently large with respect to the initial condition Vo (c.f., (4.13),
(4.14)) this proof of asymptotic stability is not global (i.e., for fixed kp and k, there will sluays exist some
Vo such that ) and/or 12 are not positive). For this particular algorithm, it is presently not clear how to
adapt kp and ky, to insure global asymptotic stability since the control u in (4.1) is not linear in the
parameters (8, kp, k).

5. Summary and Remarks

The adaptive control laws derived herein, along with the sufficient conditions for stability and appropriate
parameter adaptation laws are summarized in Table II. Several remarks are in order at this point in che
discussion.

Remark 5-1 All adaptive control laws in this paper were derived for the general tracking control law. However,
slgn}ficant simplification occurs in many of these designs for the special case of set-point control (i.e.,
924=92¢=0) -

Remark 5-2 The adaptive robustness issue remains open. Certainly for parameter adaptation laws of the form
given in Table II, there will be sensitivities to noise disturbances and unmodelled dynamics directly analogous
to those which arise in the linear adaptive control case. It presently appears that many of the robustness
techniques developed in the linear adaptive control literature will carry over to the nonlinear adaptive control
applicacion. This conjecture, however, remains to be investigated,

Remark 5-3 In the nonadaptive case, many of the control laws in Table II are in a form appropriate for
application of the recursive Newton-Euler computational algorithm. However, the Newton-Euler algorithm requires
knowledge of all physical parameters-more parameters than, are actually needed to control the system adaptively
and more than are actually adapted on-~line in the vector 6 of Table II. Hence, the transformation from © back
to physical parameters is required in order to salvage use of the Newton-Euler algorithm in the adaptive case.
However, the transformation is generally nonlinear and will not lead to a unique solution unless further
constraints are imposed. One typical set of constraints arises when only the payload mass is unknowmn. In

the more general adaptive case, it is useful to note that all linear in the parameters expressions can be
implemented directly, since representations of the form HO are assumed to be available in symbolic form.

Remark 5-4 The control laws of Table I were derived in [1] for the genersl desired potential energy function.
This feature was dropped in the adaptive case in order to simplify the analysis. However, it appears that

the adaptive control laws developed herein can be extended to the more general case and this line of research
presently under investigation.

Remark 5-5 A brief comparison with the recent results Paden [10] and Slotine and Li [11] is useful. Ia {10] [11],
adaptive control laws are derived by choosing u to cancel various terms i{n the Lyapunov function derivative,
rather than overbounding them (via Lemma 2.1) as was done here. This approach has the advantage of providing
global asymptotic convergence without adapting gains X, and . The control laws, however, are by necessity more
complex than those designs congidered here, and do not simplify in the set-point control case.

6. Conclusions

A new class of asymptotically stable adaptive control laws is defined bty adapting the control laws of (1]
in a certainty equivalence fashion. These algorithms are proved to be asymptotically stable without approximatioas,
linearizations or ad~hoc assumptions concerning the nonlinear manipulator dynamics. Furthermore, the asymptotic
convergence properties can be made global by appropriate adaptation of feedback gains. On-going research
efforts are directed at adaptive robustness, computation, and obstacle avoidance problems.
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